A 3D rotary renal and mesenchymal stem cell culture model unveils cell death mechanisms induced by matrix deficiency and low shear stress.
نویسندگان
چکیده
BACKGROUND In epithelial and endothelial cells, detachment from the matrix results in anoikis, a form of apoptosis, whereas stromal and cancer cells are often anchorage independent. The classical anoikis model is based on static 3D epithelial cell culture conditions (STCK). METHODS We characterized a new model of renal, stromal and mesenchymal stem cell (MSC) matrix deprivation, based on slow rotation cell culture conditions (ROCK). This model induces anoikis using a low shear stress, laminar flow. The mechanism of cell death was determined via FACS (fluorescence-activated cell sorting) analysis for annexin V and propidium iodide uptake and via DNA laddering. RESULTS While only renal epithelial cells progressively died in STCK, the ROCK model could induce apoptosis in stromal and transformed cells; cell survival decreased in ROCK versus STCK to 40%, 52%, 62% and 7% in human fibroblast, rat MSC, renal cell carcinoma (RCC) and human melanoma cell lines, respectively. Furthermore, while ROCK induced primarily apoptosis in renal epithelial cells, necrosis was more prevalent in transformed and cancer cells [necrosis/apoptosis ratio of 72.7% in CaKi-1 RCC cells versus 4.3% in MDCK (Madin-Darby canine kidney) cells]. The ROCK-mediated shift to necrosis in RCC cells was further accentuated 3.4-fold by H(2)O(2)-mediated oxidative stress while in adherent HK-2 renal epithelial cells, oxidative stress enhanced apoptosis. ROCK conditions could also unveil a similar pattern in the LZ100 rat MSC line where in ROCK 44% less apoptosis was observed versus STCK and 45% less apoptosis versus monolayer conditions. Apoptosis in response to oxidative stress was also attenuated in the rat MSC line in ROCK, thereby highlighting rat MSC transformation. CONCLUSIONS The ROCK matrix-deficiency cell culture model may provide a valuable insight into the mechanism of renal and MSC cell death in response to matrix deprivation.
منابع مشابه
Comparison of the Expression of Hepatic Genes by Human Wharton's Jelly Mesenchymal Stem Cells Cultured in 2D and 3D Collagen Culture Systems
Background: Human Wharton’s jelly mesenchymal stem cells (HWJMSCs) express liver-specific markers such as albumin, alpha-fetoprotein, cytokeratin-19, cytokeratin-18, and glucose-6-phosphatase. Therefore, they can be considered as a good source for cell replacement therapy for liver diseases. This study aimed to evaluate the effects of various culture systems on the hepatocyte-specific gene expr...
متن کاملWharton’s Jelly Mesenchymal Stem Cell: Various Protocols for Isolation and Differentiation of Hepatocyte-Like Cells; Narrative Review
There are several differentiation methods for mesenchymal stem cells (MSCs) into hepatocyte-like cell. Investigators reported various hepatic differentiation protocols such as modifying culturing conditions or using various growth factors/cytokines. In this literature review, we compared different MSCs extraction and isolation protocols from Wharton’s jelly (WJ) and explored various MSCs differ...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملNanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells
Introduction: Mechanical stimulation of human mesenchymal stem cells has demonstrated changes in many cell behaviours such as adhesion, migration, growth and differentiation through mechanotransductive pathways. These include experiments on effect of nanotopography 1, shear stress, stiffness of extracellular matrix 2, strain, stress and acoustic wave energy 3 on cells. In this research we wer...
متن کاملInduced Chondrogenic Differentiation of hESCs by hESC-Derived MSCs Conditioned Medium and Sequential 3D-2D Culture System
Background and Aims: It has been proven that human mesenchymal stem cells (MSCs) conditioned medium (hMSCs-CM) can influence human embryonic stem cells (hESCs) chondrogenic differentiation. In this study, we hypothesized that conditioned medium (CM) from hESCs-derived MSCs in a sequential 3D-2D culture system could facilitate the induction of chondrogenesis in hESCs. Materials and Methods: CM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2008